Direct osmolyte-macromolecule interactions confer entropic stability to folded states.
نویسندگان
چکیده
Protective osmolytes are chemical compounds that shift the protein folding/unfolding equilibrium toward the folded state under osmotic stresses. The most widely considered protection mechanism assumes that osmolytes are depleted from the protein's first solvation shell, leading to entropic stabilization of the folded state. However, recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. As an exemplary and experimentally well-characterized system, we herein discuss poly(N-isopropylacrylamide) (PNiPAM) in water whose folding/unfolding equilibrium shifts toward the folded state in the presence of urea. On the basis of molecular dynamics simulations of this specific system, we propose a new microscopic mechanism that explains how direct osmolyte-macromolecule interactions confer stability to folded states. We show that urea molecules preferentially accumulate in the first solvation shell of PNiPAM driven by attractive van der Waals dispersion forces with the hydrophobic isopropyl groups, leading to the formation of low entropy urea clouds. These clouds provide an entropic driving force for folding, resulting in preferential urea binding to the folded state and a decrease of the lower folding temperature in agreement with experiment. The simulations further indicate that thermodynamic nonideality of the bulk solvent opposes this driving force and may lead to denaturation, as illustrated by simulations of PNiPAM in aqueous solutions with dimethylurea. The proposed mechanism provides a new angle on relations between the properties of protecting and denaturing osmolytes, salting-in or salting-out effects, and solvent nonidealities.
منابع مشابه
Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization
It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...
متن کاملOsmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization
It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...
متن کاملEntropic stabilization of proteins by TMAO.
The osmolyte trimethylamine N-oxide (TMAO) accumulates in the cell in response to osmotic stress and increases the thermodynamic stability of folded proteins. To understand the mechanism of TMAO induced stabilization of folded protein states, we systematically investigated the action of TMAO on several model dipeptides (leucine, L(2), serine, S(2), glutamine, Q(2), lysine, K(2), and glycine, G(...
متن کاملInhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.
Small organic molecules termed osmolytes are harnessed by a variety of cell types in a wide range of organisms to counter unfavorable physiological conditions that challenge protein stability and function. Using a well characterized reporter system that we developed to allow in vivo observations, we have explored how the osmolyte proline influences the stability and aggregation of a model aggre...
متن کاملEffect of Osmolytes on the Conformational Behavior of a Macromolecule in a Cytoplasm-like Crowded Environment: A Femtosecond Mid-IR Pump-Probe Spectroscopy Study.
Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 118 26 شماره
صفحات -
تاریخ انتشار 2014